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Abstract— Hyperspectral image (HSI) denoising is challenging
not only because of the difficulty in preserving both spectral and
spatial structures simultaneously, but also due to the requirement
of removing various noises, which are often mixed together.
In this paper, we present a nonconvex low rank matrix approxi-
mation (NonLRMA) model and the corresponding HSI denoising
method by reformulating the approximation problem using
nonconvex regularizer instead of the traditional nuclear norm,
resulting in a tighter approximation of the original sparsity-
regularised rank function. NonLRMA aims to decompose the
degraded HSI, represented in the form of a matrix, into a low
rank component and a sparse term with a more robust and less
biased formulation. In addition, we develop an iterative algorithm
based on the augmented Lagrangian multipliers method and
derive the closed-form solution of the resulting subproblems
benefiting from the special property of the nonconvex surrogate
function. We prove that our iterative optimization converges
easily. Extensive experiments on both simulated and real HSIs
indicate that our approach can not only suppress noise in
both severely and slightly noised bands but also preserve large-
scale image structures and small-scale details well. Comparisons
against state-of-the-art LRMA-based HSI denoising approaches
show our superior performance.

Index Terms— Denoising, hyperspectral image (HSI), noncon-
vex low rank approximation (NonLRMA).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are widely used in
various applications, including environmental studies,

biomedical imaging, and military surveillance [1]–[4], due
to digital sensing technology advance. In these applications,
however, some difficulties are exposed. First, the size of
the ground HSIs is increasing dramatically, resulting in “the
curse of dimensionality.” Second, caused by photon shot
noise, malfunctioning arrays in camera sensors, faulty memory
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locations in hardware, and transmission in a noisy channel [5],
HSIs are often unavoidably corrupted by several types of
noises, including Gaussian noise, impulse noise, deadlines,
and stripes [6]. These pose great challenges to further appli-
cations, such as classification, target detection, and HSI unmi-
xing [7]–[12]. It is, therefore, of vital importance to design
an HSI denoising method, which can efficiently process HSI
data and, meanwhile, effectively remove these different types
of noises. To achieve this, the sparsity property of HSIs,
which states that high-dimensional HSI data often lie in a
low-dimensional subspace, should be sufficiently exploited.

Various techniques have been proposed for image denoising.
Along them, the global correlation along spectrum (GCS)
and the nonlocal self-similarity across space (NSS) as prior
information have been widely used by them. An HSI contains
dozens or even hundreds of bands, and GCS means that images
across different spectra are highly correlated. Mathematically,
by representing an HSI as a matrix, GCS implies the low rank
property of the data matrix. The NSS refers to the fact that
many full-band patches similar to a given local full-band patch
can be found [13]. This property has been used [14]–[16] to
denoise the HSI. As stated in [6] and [17], the performance
of these methods often suffers from the fact that the intrinsic
properties are inevitably neglected [13]. An HSI essentially
can be viewed as a 3-D array. Based on this observation,
tensor-based multilinear data analysis is proposed [18]–[20].
For example, to take account of the spectral redundancy,
the lower rank tensor approximation algorithm, which jointly
removes noise and reduces spectral dimensions, is proposed in
[20]. The robust low-rank tensor recovery algorithm proposed
in [19] is similar to tensor recovery via multi-linear augmented
Lagrange multiplier [21] except that it adopts the l2,1 norm.
A novel tensor-based denoising method is proposed in [13]
where GCS and NSS as prior knowledge are exploited. Most
tensor-based HSI denoising models in the literature mainly
take two forms: CANDECOMP/PARAFAC (CP) decomposi-
tion and Tucker decomposition. However, these methods may
suffer from several issues. On the one hand, it is NP-hard
to compute the CP rank [22]. As a result, the best low rank
CP approximation of a tensor is unknown. On the other hand,
Tucker decomposition is not unique. Besides, the application
of a core tensor and an n-mode tensor product would incur
information loss of spatial details [23].

Recently, the low rank models in which one aims to
recover a low rank matrix representing the global information
and a sparse one denoting the local information from the
observation have attracted considerable attention. Besides,
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Wright et al. [24] and Candès et al. [25] have shown
that under incoherence assumptions, the solution can be
exactly obtained with a high probability despite significant
corruption. Compared with the classical principal component
analysis (PCA), which is sensitive to outliers and gross
corruptions (non-Gaussian noise), the low rank models are
robust to various types of noises. Inspired by the fact that the
low rank property generally holds for clean HSI, denoising
methods based on low rank decomposition [6], [26]–[30]
lexicographically vectorize all images or similar patches to
yield 2-D data, which can then be decomposed into a low
rank matrix representing the clean images (patches) and a
sparse matrix denoting non-Gaussian noise.

Albeit the success of low rank models in theoretical research
and practical applications, there are still some drawbacks in
convex relaxation. First, the nuclear norm adds all singular val-
ues together rather than treating them equally as the rank func-
tion does. This implies that larger singular values are penalized
more heavily than smaller ones. Furthermore, the nuclear
norm is essentially an l1 norm of singular values. As is well
known, l1 norm generally results in a biased estimator due
to its shrinkage effect [31]–[33]. Second, previous theoretical
analysis is generally based on a strong assumption that the
underlying matrix satisfies incoherence property, which may
not be guaranteed in practical scenarios. Moreover, the convex
relaxation has poor convergence rate as the matrix dimension
grows. To date, using nonconvex function instead of the
l1 norm as the surrogates of the l0 norm has received much
attention. Specifically, the popular nonconvex regularizers
include minimax concave penalty [32], l p norm (0 < p < 1)
[34], log-sum penalty [35], log-determinant penalty [36], trun-
cated nuclear norm (TNN) [37], and the capped l1 penalty [38].

Some nonconvex low rank matrix approximation (NonL-
RMA) models have been proposed for HSI denoising. But
they are different from our work. Zhang et al. [6] introduced
a mixed HSI restoration model, which applies low rank matrix
recovery (LRMR) to each image patch to simultaneously
remove Gaussian noise, impulse noise, deadlines, and stripes.
To further remove mixed noise, the nonconvex formulation
GoDec [39], which alternates between updating low rank
matrix via low rank projection and estimating sparse matrix
using a hard thresholding operator, is used. To reduce com-
plexity, a bilateral random projection method is employed to
avoid computing singular value decomposition (SVD), leading
to significant increase of processing speed. However, GoDec
needs to first estimate the rank and cardinality, which are not
easy-to-obtain in practice. That is mainly because the rank of
each patch is usually relatively small and generally unknown.
Another limitation is that it cannot guarantee a unique solution,
since different projection may yield different results [40].
Similar to [6], He et al. [27] developed the noise-adjusted
iterative LRMA to account for different noise intensities in
different bands, whereas similar issues in [6] are introduced by
utilizing the randomized SVD method to solve the nonconvex
formulation. In addition, the rank also needs to be predefined,
which implies that the intrinsic rank information cannot be
automatically captured. Some other denoising approaches [17],
[41], [42] were developed.

Our Work: To overcome the aforementioned issues,
this paper presents the NonLRMA and the corresponding
HSI denoising method to more accurately extract the low rank
component from the degraded HSI, which may be contami-
nated by various types of noises. Our key observation is that
those larger singular values should be less penalized. This
is quite reasonable, since for natural images, larger singular
values are more important than smaller ones as they imply
energy of the major components, and, by contrast, the smaller
ones mainly correspond to noise. To achieve this, a novel
nonconvex regularizer, instead of the traditional nuclear norm
widely used by previous methods, is presented in our for-
mulation, such that the low rank property of HSIs is better
exploited. Note that using a nonconvex penalty function to
capture the low rank information is also motivated by the
conventional compressive sensing recovery [43] and the recent
literature [28], [36], [44], [45].

In summary, our contributions are threefold.
1) We leverage NonLRMA to denoise HSIs, which may

be corrupted by mixed noises, not just Gaussian noise
assumed by most previous methods, and study the
general solver of this problem.

2) A novel nonconvex regularizer is proposed in our
NonLRMA. Unlike the traditional nuclear norm, which
shrinks all singular values with the same amount,
the new regularizer achieves more sparse approxi-
mation of singular values and automatically captures
the intrinsic rank information. Furthermore, different
from [6] and [39], NonLRMA does not require the rank
information to be known beforehand.

3) An effective, robust, yet easy-to-implement iterative
algorithm based on the augmented Lagrangian multi-
pliers (ALM) method is developed. In theory, we prove
that our algorithm is able to converge easily to a stable
point of the objective function.

Compared with many state-of-the-art HSI denoising meth-
ods, extensive experiments on both simulated and real HSIs
demonstrate that our method works well in simultaneously
removing the Gaussian noise, impulse noise, deadlines, and
stripes, while at the same time preserving image details.

The remainder of this paper is organized as follows.
In Section II, the low rank model for HSI denoising is
analyzed in detail. Then, we formally introduce the proposed
NonLRMA model and the optimization method we develop
in Section III. We evaluate the performance of our proposed
method in Section IV and conclude this paper in Section V.

II. BACKGROUND

Due to the significant correlations of the spectra of neigh-
boring pixels, the Casorati matrix often presents the low rank
property. That is to say, the subspace spanned by the spectra
can be well regularized by the low rank constraint. For better
visualization, Fig. 1 shows the low rank property of HSIs.

How closely the noise model fits the real noise environment
is crucial to the performance of denoising. Traditionally, most
existing HSI denoising methods only consider the additive
white Gaussian noise, which is not true in practice. Noise
in HSIs normally includes Gaussian noise, impulse noise,
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Fig. 1. Illustration of the low rank property. (a) Original Washington
DC Mall image. (b) Patch extracted from the Washington DC Mall image.
(c) Corresponding Casorati matrix.

deadlines, and stripes, and is usually a mixture of them.
To account for this, the degradation model of an HSI can be
formulated as

Y = L + S + N (1)

where Y is the degraded HSI, L represents the clean HSI,
S denotes the impulse noise, deadlines, strips, and so on, and
N is the Gaussian noise. Here, Y , L, S, and N are the third-
order tensors with the same size of M × N × K , where M, N ,
and K stand for the width, the height of the image, and the
number of spectral bands, respectively. For a subcube of size
q × q × K centered at the pixel (i, j), a matrix Y ∈ R

q2×K

with a spatial mode and a spectral mode via lexicographical
rearrangement can be obtained (the process shown in Fig. 1).
Consequently, the corresponding noise degradation model can
be converted into the following matrix form:

Y = L + S + N (2)

where matrices L, S, and N are with the same size as Y .
Clearly, L has a low rank. Note that patches are usually
overlapped. To deal with the joint regions of neighboring
patches and hide possible seams, the pixel value in each band
of HSI is then determined by taking the average of the restored
patches at this pixel.

In both theoretical and computational aspects,
Wright et al. [24] and Candès et al. [25] presented a
convex optimization framework called robust PCA (RPCA)
for LRMA. This formulation and its extensions have been
successfully used in HSI denoising [6], [26], [28], [29].
RPCA is formulated as

min
L ,S

Rank(L) + λ‖S‖0 s.t. Y = L + S (3)

where λ > 0 is a regularization parameter and ‖S‖0 denotes
the number of nonzero entries in matrix S. Due to the discrete
nature of the rank and the l0 quasi-norm, solving problem (3)
is NP-hard and intractable. A common approach is to use
the convex relaxation substituting the rank function and the
l0 norm with the nuclear norm and l1 norm, respectively,
resulting in the following convex optimization problem:

min
L ,S

‖L‖∗ + λ‖S‖1 s.t. Y = L + S (4)

where ‖L‖∗ = ∑
i σi (L) and σi (L) is the i th singular value

of the matrix L; ‖S‖1 = ∑
i, j |Si, j |. Generally speaking,

the nuclear norm is a loose approximation of the rank func-
tion [28], [36], [44]. Inspired by the low rank property of

HSIs, Zhang et al. [6] adopted the GoDec model [39] and used
iterative hard thresholding to solve the following formulation:

min
L ,S

‖Y − L − S‖F s.t. rank(L) ≤ r, card(S) ≤ k (5)

where r and k denote the upper bound of the rank of L and
the cardinality of S, respectively. ‖ ·‖F is the Frobenius norm.
Note that, both L and S need to be known beforehand by this
method.

Though great achievements have been made, most previous
HSI denoising methods based on low rank approximation
suffer from the following aspects. First, the nuclear norm adds
all singular values together, which indicates that larger singular
values are penalized more heavily than smaller ones, resulting
in overshrinking the rank component. Second, the nuclear
norm-based approaches generally have poor convergence rate
due to many iterations. Third, the rank information needs to be
predefined by some methods, which is impractical in practice.

III. PROPOSED NONCONVEX LOW RANK

MATRIX APPROXIMATION MODEL

In this section, we develop a novel NonLRMA model and
derive the corresponding HSI denoising algorithm. The key
to the proposed method is to use the γ -norm, which can
address the aforementioned drawbacks of the nuclear norm.
We also show how to optimize the proposed model effectively
based on the ALM method. The remainder of this section
will elaborate that with our nonconvex low rank regularizer,
the rank information is not required to be known beforehand
as some previous methods have done [6]. Furthermore, our
low rank model works well in capturing the intrinsic rank
information.

A. Nonconvex Regularizer and NonLRMA Model
Inspired by the remarkable performance of nonconvex reg-

ularizers used for signal and image processing [34]–[36], [44],
we introduce the nonconvex matrix rank approximation, which
is defined as

rank(L) ≈ ‖L‖γ =
min{q2,K }∑

i=1

(
1 − e−σi (L)/γ

)
(6)

where γ > 0. Here, we refer to (6) as γ -norm.
Some matrix rank relaxations have been proposed in the

literature as shown in Fig. 2. For example, to alleviate the
deficiency of the convex relaxation (4), Lingala et al. [46]
proposed the Schatten p-norm, which could date back to
1993 [34]. Especially, the recent work [28] has the similar
idea, which is called the weighted Schatten p-norm. From a
mathematical point of view, our nonconvex low-rank regular-
izer is completely different from the Schatten p-norm. On the
other hand, the corresponding HSI denoising approach [28]
needs to manually determine the weight set {ωi }, whereas our
algorithm does not. From Fig. 2, it is easy to observe that
the nuclear norm, the log-determinant function, as well as
the Schatten p-norm deviate significantly from 1 when the
singular values are greater than 1, indicating that they over-
shrink the rank component. By contrast, our γ -norm (denoted
by the black curve) matches well with the true rank, meaning
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Fig. 2. Approximation of the rank function using different functions. γ, δ,
and p are set to 0.1, 10−6, and 0.3, respectively, and the true rank is 1 for
nonzero σi .

that the γ -norm approximates the rank function better than
them. Specifically, the γ -norm is a pseudonorm, but with nice
properties as stated by the following proposition.

Proposition 1: Given L ∈ R
q2×K , the γ -norm defined

in (6) satisfies the following properties.

1) limγ→0 ‖L‖γ = rank(L).
2) ‖L‖γ is unitarily invariant, i.e., ‖L‖γ = ‖U LV ‖γ for

any orthonormal U ∈ R
q2×q2

and V ∈ R
K×K .

3) Positive definiteness: ‖L‖γ ≥ 0 for any L ∈ R
q2×K and

‖L‖γ = 0 if and only if L = 0.

Proof:

1) For φ(σi (L)) = 1−e−σi (L)/γ , we have lim
γ→0

φ(σi (L)) =
{

0 σi (L) = 0

1 σi (L) 	= 0
which consequently reaches the conclusion.

2) Let (·)T , (·)−1, and λ denote the transpose, inverse,
and eigenvalue of a matrix, separately. E is a unit
matrix. Then, the eigenpolynomial |(U LV )T U LV −
λE | = |V T LT U T U LV − λE | = |V T LT LV − λE | =
|V −1 LT LV −λE | = |LT L−λE |. This means that matri-
ces (U LV )T U LV and LT L have the same eigenvalues.
As a result, U LV and L have the same singular values.
Hence, the conclusion is true.

3) For any σi (L), we have σi (L) ≥ 0. It is, therefore,
obvious that φ(σi (L)) ≥ 0 and ‖L‖γ ≥ 0. Finally,
the conclusion holds for the reason that φ(σi (L)) takes
0 if and only if L = 0. �

Consequently, we consider the nonconvex γ -norm defined
in (6) as the regularization term, Following [47], we adopt
the l2,1 norm to model the sparse component. Based on the
aforementioned two aspects, our proposed NonLRMA model
for HSI denoising is formulated as

min
L ,S

‖L‖γ + λ‖S‖2,1 s.t. ‖Y − L − S‖F ≤ δ (7)

where ‖S‖2,1 = ∑K
j=1(

∑q2

i=1 S2
i j )

1/2 and δ is a constant
related to the standard deviation of the independent and identi-
cally distributed Gaussian noise N . The NonLRMA model (7)
can be regarded as an extension of (4). Whereas compared
with (4), the challenge of solving NonLRMA model lies in
the fact that a global solution is difficult to obtain due to the
nonconvexity of (7). As a result, the subgradient method is
no longer applicable. In Section III-B, we prove that each
subproblem of (7) has a closed-form solution despite of its
nonconvexity.

B. ALM-NonLRMA Optimization
It is easy to deduce that the augmented Lagrangian function

for problem (7) is

L(L, S,�; ρ) = ‖L‖γ + λ‖S‖2,1

+ 〈�, Y − L − S〉 + ρ

2
‖Y − L − S‖2

F (8)

where ρ > 0 is called the penalty parameter, � ∈ R
q2×K is the

Lagrangian multiplier, and 〈·〉 denotes the standard trace inner
product, i.e., 〈A, B〉 = trace(AT B). Following the idea of the
Gauss–Seidel method, we can update L and S alternatively by
keeping one of them fixed at its latest value and then update
the Lagrange multiplier, that is:

Lk+1 = arg min
L

L(L, Sk ,�k; ρk) (9)

Sk+1 = arg min
S

L(Lk+1, S,�k ; ρk) (10)

�k+1 = �k + ρk(Y − Lk+1 − Sk+1) (11)

ρk+1 = min{β ∗ ρk , ρmax} (12)

where Lk denotes L in the kth iteration and β is set to 1.1.
With simple manipulation, we have the following iterative
scheme:
Lk+1 = arg min

L
‖L‖γ + ρk

2
‖L −

(

Y − Sk + �k

ρk

)

‖2
F (13)

Sk+1 = arg min
S

λ‖S‖2,1 + ρk

2
‖S −

(

Y − Lk+1 + �k

ρk

)

‖2
F .

(14)

Here, we refer to subproblems (13) and (14) as L-subproblem
and S-subproblem, separately. Obviously, the above-
mentioned iterative scheme exploits the separable property of
our objective function.

Let σ k
1 ≥ σ k

2 ≥ · · · ≥ σ k
s represent the singular values of

Lk with s = min{q2, K } and ∇φ(σ k
i ) denote the gradient

of φ at σ k
i . Let f (L) = (1/2)‖L − Dk‖2

F with Dk =
Y − Sk + (�k/ρk). It is easy to prove that the gradient of
f (L) is Lipschitz continuous by setting the Lipschitz constant
being 1. From Fig. 2, we can observe that the nonconvex
regularizer is continuous, concave, smooth, differentiable, and
monotonically increasing on [0,+∞), and its gradient is
nonnegative and monotonically decreasing. Considering the
nonascending order of singular values and according to the
antimonotone property of gradient of our nonconvex function,
we have

0 ≤ ∇φ
(
σ k

1

) ≤ ∇φ
(
σ k

2

) ≤ · · · ≤ ∇φ
(
σ k

s

)
(15)

φ
(
σi (L)

) ≤ φ
(
σ k

i

) + ∇φ
(
σ k

i

)(
σi (L) − σ k

i

)
. (16)
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The above-mentioned result (16) can be easily proved by the
supergradient definition of the concave function.

Following (16), we solve the following relaxation problem:

Lk+1 = arg min
L

1

ρk

s∑

i=1

φ
(
σ k

i

) + ∇φ
(
σ k

i

)(
σi (L)−σ k

i

) + f (L)

= arg min
L

1

ρk

s∑

i=1

∇φ
(
σ k

i

)
σi (L) + 1

2
‖L − Dk‖2

F . (17)

Then, following [44], the optimum solution of L-subproblem
can be efficiently obtained by resorting to recently proposed
generalized weight singular value thresholding (WSVT) [48],
as shown in Lemma 1. Solving (17) is equivalent to computing
the proximity operator of the weighted nuclear norm. It is
worth noting that the weight ∇φ(σ k

i ) in problem (17) is
automatically calculated. However, the weight in the weighted
Schatten p-norm [28] must be given in advance. More specif-
ically, L is a low rank matrix representing the clean image.

Lemma 1: For any (1/ρk) > 0, the given data Dk = Y −
Sk + (�k/ρk), and 0 ≤ ∇φ(σ k

1 ) ≤ ∇φ(σ k
2 ) ≤ · · · ≤ ∇φ(σ k

s ),
a globally optimal solution L∗ to problem (17) is given by the
WSVT [48]

L∗ = US∇φ
ρk

(�)V T (18)

where Dk = U�V T is the SVD of Dk and S(∇φ/ρk )(�) =
Diag{max (�ii − (∇φ(σ k

i )/ρk), 0)}.
The solution of S-subproblem is given by Lemma 2.
Lemma 2: Given a matrix Wk = Y − Lk+1 + (�k/ρk), the

S-subproblem has an optimal solution S∗ and its j th column
is [49]

S∗(:, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖Wk(:, j)‖2− λ

ρk

‖Wk(:, j)‖2
Wk(:, j), if

λ

ρk
<‖Wk(:, j)‖2;

0, otherwise.

(19)
It is well known that l2,1-norm is a sparsity-inducing norm

defined as the l1-norm of the columns of the sparse noise
matrix S. Embodying the specific structures in HSIs, the norm
is vital to deal with sample-specific corruptions and outliers,
such as stripes and deadlines.

Algorithm 1 shows the pseudocode of our specifically
designed algorithm for optimizing the NonLRMA model (7).
C. Convergence Analysis

We theoretically analyze the convergence of the proposed
algorithm with the main result presented in Theorem 1.
To introduce Theorem 1, we first give Lemmas 3–5, which
provide some sufficient conditions under which Theorem 1
holds.

Lemma 3: L(L, S,�; ρ) is monotonically decreasing with
respect to variable L.

Proof: In iteration k + 1, Lk+1 is a global solution to
problem (17). We then have

1

ρk

s∑

i=1

∇φ(σ k
i )σ k+1

i + 1

2
‖Lk+1 − Dk‖2

F

≤ 1

ρk

s∑

i=1

∇φ(σ k
i )σ k

i + 1

2
‖Lk − Dk‖2

F . (20)

Algorithm 1 ALM-NonLRMA for HSI denoising
Input: Noisy HSI Y .
Initialize: γ, ε, λ, β, ρ0, S0 = �0 = 0, k = 0.
1: while not converged do
2: Compute Dk = Y − Sk + �k

ρk
;

3: Update Lk+1 by (18);
4: Compute Wk = Y − Lk+1 + �k

ρk
;

5: Update Sk+1 by (19);
6: Update �k+1 by (11);
7: Update ρk+1 by (12);
8: Check the convergence condition
9: ‖Y − Lk+1 − Sk+1‖F ≤ ε ∗ ‖Y‖F .

10: end while
11: Compute the Gaussian noise N = Y − Lk − Sk ;
Output: Denoised HSI Lk .

It can be transformed to

1

2
‖Lk+1 − Dk‖2

F − 1

2
‖Lk − Dk‖2

F

≤ 1

ρk

s∑

i=1

∇φ(σ k
i )(σ k

i − σ k+1
i ). (21)

Second, summing (16) for i = 1, 2, . . . , s

s∑

i=1

(φ(σ k+1
i ) − φ(σ k

i )) ≤
s∑

i=1

∇φ(σ k
i )(σ k+1

i − σ k
i ). (22)

Now, we add (21) and (22) together

L(Lk+1, Sk,�k ; ρk) − L(Lk , Sk,�k ; ρk) ≤ 0. (23)

This reaches the conclusion that L(L, S,�; ρ) is monotoni-
cally decreasing with respect to variable L. �

Lemma 4: The sequence {�k} is bounded.
Proof: The optimal Sk+1 needs to satisfy the first-order

optimality condition, that is

0 ∈ ∂SL(Lk+1, S,�k ; ρk)|Sk+1

= ∂S(λ‖S‖2,1)|Sk+1 − �k − ρk(Y − Lk+1 − Sk+1)

= ∂S(λ‖S‖2,1)|Sk+1 − �k+1. (24)

It can easily be proved that ∂S(λ‖S‖2,1)|Sk+1 is bounded, since

∂S(‖S‖2,1)|Sk+1 =
⎧
⎨

⎩

0, if ‖Sk+1(:, j)‖2 = 0
Sk+1(:, j)

‖Sk+1(:, j)‖2
, otherwise.

Thus, {�k} is bounded. �
Lemma 5: Sequences {Lk} and {Sk} are bounded if∑∞
i=1(ρi + ρi+1/(ρi )

2) < ∞.
Proof: With simple manipulation, we have

L(Lk , Sk,�k ; ρk)

= L(Lk , Sk ,�k−1; ρk−1) + ρk − ρk−1

2
‖Y − Lk − Sk‖2

F

+ 〈�k − �k−1, Y − Lk − Sk〉
= L(Lk , Sk ,�k−1; ρk−1) + ρk + ρk−1

2(ρk−1)2 ‖�k − �k−1‖2
F .

(25)
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The above-mentioned equation can be obtained by using (11).
Then

L(Lk+1, Sk+1,�k; ρk)

≤ L(Lk+1, Sk,�k ; ρk)

≤ L(Lk , Sk ,�k; ρk)

= L(Lk , Sk ,�k−1; ρk−1) + ρk + ρk−1

2(ρk−1)2 ‖�k − �k−1‖2
F .

(26)

Since Sk+1 is a global solution to (14), we get the first
inequation. The second inequation is given by Lemma 3.
Iterating over the inequality chain (26) for k times, we have

L(Lk+1, Sk+1,�k ; ρk)

≤ L(L1, S1,�0; ρ0) +
k∑

i=1

ρi + ρi−1

2(ρi−1)2 ‖�i − �i−1‖2
F

≤ L(L1, S1,�0; ρ0) + C
k∑

i=1

ρi + ρi−1

2(ρi−1)2 (27)

where C is an upper bound of {‖�i − �i−1‖2
F }. Under the

condition that
∑∞

i=1(ρi + ρi+1/(ρi )
2) < ∞, all terms on

the right-hand side of the above-mentioned inequality are
bounded; thus, L(Lk+1, Sk+1,�k ; ρk) is upper bounded. Add
(1/2ρk)‖�k‖2

F to the augmented Lagrangian function (8)

L(Lk+1, Sk+1,�k ; ρk) + 1

2ρk
‖�k‖2

F

= ‖Lk+1‖γ +λ‖Sk+1‖2,1+ ρk

2

∥
∥
∥
∥Y − Lk+1 − Sk+1 + �k

ρk

∥
∥
∥
∥

2

F
.

According to Lemma 4, the left-hand side is bounded.
Thus, each term on the right-hand side is bounded; then,
{Lk} and {Sk} are bounded. �

Till now, we have shown the boundedness of {Lk, Sk,�k}.
Next, we will present the main theoretical result in Theorem 1.

Theorem 1: Let {Lk, Sk,�k} be the sequence generated by
Algorithm 1 and {L∗, S∗,�∗} be an accumulation point. Then,
{L∗, S∗} is a stationary point of the original problem (7)
as long as

∑∞
i=1(ρi + ρi+1/(ρi )

2) < ∞ and limk→∞ ρk(Sk −
Sk+1) = 0.

Proof: From Lemmas 4 and 5, we know that the sequence
{Lk, Sk ,�k} is bounded. By Bolzano–Weierstrass theorem,
the sequence has at least one accumulation point, denoted
as {L∗, S∗,�∗}. Without loss of generality, we assume that
{Lk, Sk ,�k} converges to {L∗, S∗,�∗}. Next, we prove that
this accumulation point is a stationary point of problem (7).

From (11) and the boundedness of {�k}, we have
limk→∞ Y − Lk+1 − Sk+1 = limk→∞(�k+1 − �k+1/ρk) = 0;
then

Y = L∗ + S∗. (28)

By the first-order optimality condition, we have

∂LL(L, Sk ,�k; ρk)|Lk+1

= ∂L(‖L‖γ )|Lk+1 − �k − ρk(Y − Lk+1 − Sk)

= ∂L(‖L‖γ )|Lk+1 − �k+1 + ρk(Sk − Sk+1)

= 0.

Due to the assumption of limk→∞ ρk(Sk −Sk+1) = 0, we have

∂L(‖L∗‖γ ) − �∗ = 0. (29)

Following (24), we get

∂S(λ‖S∗‖2,1) − �∗ = 0. (30)

From (28)–(30), we can conclude that {L∗, S∗,�∗} satis-
fies the Karush—Kuhn–Tucker conditions of L(L, S,�; ρ).
{L∗, S∗} is thus a stationary point of the original problem (7).

�
D. Connection With Existing Work

We further emphasize the connection and difference
between the proposed method and some existing approaches
in the literature for LRMA, including the TNN [37] and
iteratively reweighted nuclear norm (IRNN) [44] for matrix
completion.

1) It is a common observation that those larger singular
values quantify the information of underlying principal
directions. The TNN, however, discards the sum of
those larger singular values. Furthermore, this approach
needs outer iterations and additional SVD computation,
resulting in extra, often unnecessary computation load
and storage. On the other hand, it is hard to determine
the number of singular values.

2) IRNN uses a family of nonconvex surrogates to approx-
imate the rank function, leading to more accurate results
for LRMR. However, it remains unclear which choice is
optimal for the particular nonconvex function and how to
determine the additional tuning parameters. In this paper,
we will give some strategies for better recovery, which
will be discussed in Section IV. Moreover, IRNN mainly
deals with matrix completion, which aims to recover
a low rank matrix from partial observations without
considering the non-Gaussian noise, or, for each image,
it needs some pixels not corrupted by non-Gaussian
noise to ensure successful LRMR.

In addition, TNN and IRNN apply nonconvex low rank
models to the whole image data, without considering the
local similarity. On the other hand, the noise intensities in
different bands of an HSI may differ much. Thus, applying
TNN or IRNN to each band uniformly would inevitably incur
blur or the loss of local details. These issues inspire us to
develop a patch-based algorithm, facilitating the detection of
mixed noise.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We conduct extensive experiments to verify the effect-
iveness of our proposed NonLRMA method and show the
results in comparison with some existing competing HSI
denoising approaches: GoDec-based LRMR [6], the video
block matching 3-D filtering (VBM3D) [14], noise-adjusted
LRMA (NAILRMA) [27], and weighted Schatten p-norm-
based LRMA (WSN-LRMA) [28]. Note that the last three
are recently developed state-of-the-art HSI denoising methods
and belong to the low rank-based scheme. All the codes are
provided by the authors. Before denoising, the gray values
of each band are scaled to the interval [0, 1], and they are



5372 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 9, SEPTEMBER 2017

Fig. 3. Restoration results on synthetic data: moderate noise level. (a) Origi-
nal false-color image (R:6, G:88, B:221). (b) Noisy image. The resorted image
obtained by (c) VBM3D, (d) LRMR, (e) NAILRMA, (f) WSN-LRMA, and
(g) NonLRMA. The figure is better viewed in a zoomed-in PDF.

stretched back to the original level after denoising. All the
experiments were run in MATLAB R2015a on a laptop with
a CORE i7 3.40-GHz CPU and 16-GB memory. For the
purpose of reproductivity, we provide our source code at
https://www.researchgate.net/publication/315725239_Code_of
_NonLRMA.

A. Simulated Data Experiment for Mixed-Noise Removal

In this section, we first compare all the methods on synthetic
data, which is generated by the ground truth of the Indian
Pines data set [50] in a similar way to [29]. The size of the
synthetic image is 145×145×224, and the reflectance values
of all the voxels in the HSI are linearly mapped to [0, 1].
More detailed description of the synthetic data can be found
in [29].

In this experiment, two typical kinds of noises are added to
all the bands of the ground truth, which are briefly described
as follows.

1) Since, in practice, noise intensity in different bands is
often different, two degrees of zero-mean Gaussian noise
are added. To simulate the level of moderate noise,
the signal-to-noise ratio (SNR) value of each band varies
from 15 to 25 dB randomly, and the mean SNR value
of all the bands is 20.43 dB. For the level of severe
noise, the SNR value of each band varies from 45 to
55 dB randomly, and the mean SNR value of all the
bands is 49.75 dB.

2) Salt-and-pepper impulse noise is added to all the
bands with 20% pixels of each band being corrupted.
The impulse noise intensity of each band varies from
0.0196 to 0.0784, and the mean intensity is 0.0492.

Three commonly used measures are adopted for quanti-
tative comparison, including peak SNR (PSNR), structural
similarity (SSIM) [51] measuring spatial similarity between
the denoised HSI and the original one, and feature simi-
larity (FSIM) [52] emphasizing perceptual consistency with
the original HSI. In general, the larger these three measures
are, the closer the denoised HSI is to the ground truth.
Finally, the mean value of each measure for the whole HSI

Fig. 4. Restoration results on synthetic data: severe noise level. (a) Original
false-color image (R:6, G:88, B:221). (b) Noisy image. The resorted image
obtained by (c) VBM3D, (d) LRMR, (e) NAILRMA, (f) WSN-LRMA, and
(g) NonLRMA. The figure is better viewed in a zoomed-in PDF.

is calculated and denoted as MPSNR, MSSIM, and MFSIM,
separately. In this simulated experiment, we first adopt the
same parameter setting to the original papers [6], [28] and then
manually adjust them for better visual effects. The parameter
setting of our method is shown in Table III.

The statistical data reporting the performance of all the
methods are shown in Table I. The highest MPSNR, MSSIM,
and MFSIM values are highlighted in bold, and the second-
best results for each quality index are underlined. From
Table I, we can see that our proposed method achieves
the highest MPSNR under both moderate and severe noise
levels. It achieves 0.812- and 1.499-dB improvement over
the NAILRMA method, respectively. For the moderate noise
level, in comparison with LRMR, our proposed method yields
comparable or even slightly better results in terms of MSSIM
and MFSIM. For the severe noise level, it yields best results
over other competing methods, which validates the effec-
tiveness of the nonconvex regularizer for removing mixed
noise. In addition, some typical bands of denoised HSIs
obtained by different methods are shown in Figs. 3 and 4.
Fig. 3 displays the denoising results of different methods in
the moderate noise case. Obviously, some residual impulse
noise can still be observed in the restored image by VBM3D
as shown in Fig. 3(c), while the results by LRMR, NAILRMA,
WSN-LRMA, and NonLRMA are visually similar, which
agrees with the quantitative comparison in Table I. For the
severe noise level, the denoising results of different approaches
are shown in Fig. 4. The results of VBM3D and WSN-LRMA
cannot remove the mixed noise. LRMR and NAILRMA
remove the noise and preserve the spectral information to some
extent, but the Gaussian noise cannot be completely removed.
In Fig. 4(f), however, our proposed method achieves the best
visual performance in comparison with the restoration results
by other methods. For quantitative comparison on details,
we also calculate the PSNR, SSIM, and FSIM values of each
band as shown in Figs. 5 and 6. We can observe that in
almost all the bands, the PSNR, SSIM, and FSIM values of
the proposed method (the black curves) are higher than those
of the other methods under both moderate and severe noise
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Fig. 5. PSNR, SSIM, and FSIM values of each band of the experimental results: moderate noise level. (a) PSNR values. (b) SSIM values. (c) FSIM values.

Fig. 6. PSNR, SSIM, and FSIM values of each band of the experimental results: severe noise level. (a) PSNR values. (b) SSIM values. (c) FSIM values.

TABLE I

QUANTITATIVE EVALUATION OF THE DIFFERENT RESTORATION ALGORITHMS WITH THE SYNTHETIC DATA

levels, meaning that our proposed method outperforms other
methods for mixed-noise removal.

Figs. 7 and 8 visualize the spectral signatures before and
after restoration. Under a moderate noise level, Fig. 7 presents
the spectral signatures of the pixel (100, 100). It can be easily
seen that the curve shape of the spectral signatures acquired
by the proposed NonLRMA method [see Fig. 7(g)] closely
resembles the shape of the spectral signatures of the noise-free
spectrum [Fig. 7(a)], which further verifies our effectiveness.
Similar conclusion can be reached in Fig. 8, which compares
the shapes of spectral signatures in the case of a severe noise
level.

Another typical kind of noise in HSIs is stripes, mainly
due to inconsistent responses between different detectors.
To test the performance on stripe removal, we experiment
on the Hyperspectral Digital Imagery Collection Experi-

ment (HYDICE) image of the Washington DC Mall [53]. Due
to page limitation, a subimage of size 256×256×11 is selected
here. We randomly add periodical stripes to five different
bands. From the restoration results shown in Fig. 9, we can
easily observe that most competing methods cannot remove
stripes completely. By contrast, the proposed method obtains
comparative visual results in removing periodical stripes as
shown in Fig. 9(g). General speaking, NonLRMA employs the
γ -norm instead of the traditional nuclear norm to regularize
the spectrum component and adopts the l2,1 norm to model the
sparse component, providing remarkably discriminative ability
on mixed noise.

B. Real Data Experiments

In this section, we conduct experiments on real data,
including HYDICE urban and EO-1 Hyperion Australia data
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Fig. 7. Spectrum of pixel (100, 100) in the restoration results: moderate
noise level. (a) Original. (b) Noisy. (c) VBM3D. (d) LRMR. (e) NAILRMA.
(f) WSN-LRMA. (g) NonLRMA. The figure is better viewed in a zoomed-in
PDF.

Fig. 8. Spectrum of pixel (100, 100) in the restoration results: severe
noise level. (a) Original. (b) Noisy. (c) VBM3D. (d) LRMR. (e) NAILRMA.
(f) WSN-LRMA. (g) NonLRMA. The figure is better viewed in a zoomed-in
PDF.

sets, to investigate the performance of the proposed method.
Detailed experimental settings and results on these data are
given as follows.

1) HYDICE Urban Data Set: The HYDICE urban
images [54] of size 307 × 307 × 210 are corrupted by stripes,
deadlines, atmosphere, water absorption, and other unknown
noise (see Figs. 11 and 12). Unlike [6] and [28] where
several bands polluted by atmosphere and water absorption
are removed, we select all images as the test data, which
makes the denoising task more challenging. We follow the
experimental settings stated in [6], [28], and [55]. For the
benchmark VBM3D method, the noise variation is set to 12 as
provided in the paper [6]. The patch size, step size, rank of L,
and the cardinality of S in LRMR are set to 20, 4, 4, and 4000,
separately. For NAILRMA, the corresponding parameters are
set to 20, 4, 7, and 0.15, respectively. The parameters in

Fig. 9. Restoration results on synthetic data: Washington DC Mall. (a) Orig-
inal image. (b) Noisy image. The resorted image obtained by (c) VBM3D,
(d) LRMR, (e) NAILRMA, (f) WSN-LRMA, and (g) NonLRMA. The figure is
better viewed in a zoomed-in PDF.

WSN-LRMA including the weights for penalizing low rank
and sparse constraint, power, number of iterations, step size,
and patch size are set to 0.007, 1.2, 0.7, 3, 4, and 20, respec-
tively. For this test, we report the parameters of NonLRMA
in Table III.

Figs. 10–12 show the denoising results on bands 87, 207,
and 108 on the HYDICE urban data set. In general, it is
observed that our method can simultaneously remove the
Gaussian noise, impulse noise, deadlines, and stripes from the
noisy images, and preserve underlying image structures well.
For the slight noise mixed by Gaussian noise and stripes as
shown in Fig. 10, LRMR and NAILRMA can remove the
mixed noise, but VBM3D tends to oversmooth the result.
In addition, the WSN-LRMA method is also able to obtain
nearly the best visual representation. Nevertheless, in Fig. 11,
where the noise is mixed by Gaussian noise, deadlines, and
stripes simultaneously, it can be seen that there still exist lots
of noises in the results of VBM3D, LRMR, and NAILRMA.
WSN-LRMA achieves relatively better results, but also intro-
duces artifacts into the final results. As shown in Fig. 12, other
competing methods perform badly when the HSI is heavily
polluted by mixed noise. Our method, by contrast, can recover
most details; this is mainly because the nonconvex regularizer
is a tighter approximation to the original matrix rank function.

For a more detailed comparison, we show the vertical and
horizontal mean profiles of band 207 in this data set in
Figs. 13 and 14, and the horizontal and vertical axes represent
the column (resp. row) number and the corresponding mean
digital number value in Fig. 13 (resp. Fig. 14), respectively.
It is clearly observed that the curves of the original image
fluctuate significantly due to the existence of mixed noise.
From Fig. 13(c)–(e), it is observed that LRMR, NAILRMA,
and WSN-LRMA have removed stripes in the vertical direc-
tion, but failed to remove stripes in the horizontal direction.
As shown in Fig. 11, our proposed method provides evidently
smoother curve, indicating that the stripes in the vertical and
horizontal directions have been removed more effectively.
Specially, VBM3D, LRMR, and NAILRMA fail to remove
the thick vertical white line in the 261th column, as shown in
the highlighted red rectangle in Fig. 13(b)–(d).
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Fig. 10. Restoration results on HYDICE urban data set: slight noise band. (a) Original image located at the 87th band. Resorted image obtained by
(b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

Fig. 11. Restoration results on HYDICE urban data set: moderate noise band. (a) Original image located at the 207th band. Resorted image obtained by
(b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

Fig. 12. Restoration results on HYDICE urban data set: severe noise band. (a) Original image located at the 108th band. Resorted image obtained by
(b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

2) EO-1 Hyperion Australia Data Set: The Hyperion
image [56] of size 3858 × 256 × 242 is captured on
December 4, 2010. Similar to [28], after removing the over-
lapping bands between visual near-infrared and shortwave
infrared ranges, only a subregion of size 400 × 200 × 150
is used in our experiment.

Some representative denoising results are shown in
Figs. 15–17. It is observed that VBM3D fails to remove heavy
noise and suffers from oversmoothing the results on all these
HSIs. As shown in Figs. 15 and 16, LRMR and NAILRMA
remove part of stripes, but deadlines are left; hence, the denois-
ing performance is far from satisfactory. Similar observation
was also reported in [28]. An intuitive explanation is that
the GoDec-based LRMR using bilateral random projection
instead of computing SVD cannot guarantee a unique solution,
since different random projections may yield different results.
Moreover, LRMR and NAILRMA need the upper bound of
matrix rank to be estimated as prior, which, unfortunately,
is usually difficult to achieve. Such failures, again, reveal
the challenge in denoising HSIs. It is promising to observe
that WSN-LRMA and NonLRMA have recovered images with
significantly improved visual quality. Though much better than
VBM3D, LRMR, and NAILRMA, compared with NonLRMA,

WSN-LRMA still leaves some stripes in the resulting images,
which is not as expected. For example, as shown in Figs. 15–
17, the superior performance of the proposed method can be
easily observed in the highlighted regions, where our method
removes all types of noises and stripes while others do not.
To better illustrate this, we show the vertical and horizontal
mean profiles of band 51 in Figs. 18 and 19, respectively. From
Figs. 18 and 19, especially in the highlighted regions, it is
easy to see that NonLRMA has the best performance whereas
WSN-LRMA does not remove all stripes both vertically and
horizontally. Moreover, WSN-LRMA is more computationally
expensive, which will be clear in later subsection IV-C. These
observations strongly reveal the effectiveness of our NonL-
RMA by adopting γ -norm.

C. Model Analysis

We first discuss how to set parameters and analyze the
sensitivity of parameters in our model, including the regular-
ization parameter λ, penalty parameter ρ0, parameter γ , and
patch size q . We then report the running time for the HSI
denoising methods on two real-world HSIs. Please note that
the experiments used for parameter setting are based on the
simulated data under the moderate noise level.
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Fig. 13. Vertical mean profiles of band 207 in HYDICE urban data set.
(a) Original. (b) VBM3D. (c) LRMR. (d) NAILRMA. (e) WSN-LRMA.
(f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

1) Regularization Parameter λ: The regularization parame-
ter λ in (7) balances the influences of the rank of L and
the sparsity of S. As shown in Fig. 20, which presents the
MPSNR, MSSIM, and MFSIM values with changing λ, it can
be observed that when λ is selected from the interval [35, 50],
NonLRMA achieves the optimal performance.

2) Penalty Parameter ρ0: Subproblem (13) can be treated
as an extension of the Moreau–Yosida proximity operator.
ρk is a parameter controlling the tradeoff between the low
rank constraint and the violation of fidelity, with smaller
values of ρk associated with mapped points near the minimum
and larger values leading to a smaller movement toward the
minimum. Therefore, a varying sequence of ρk is used in (12)
for acceleration, instead of keeping the penalty parameter ρ
unchanged. Intuitively, the value of ρk should increase during
iteration. ρ0 is chosen from [10−2, 5 ∗ 10−1].

3) Parameter γ : As stated in Proposition 1, we have the
proposition: limγ→0 ‖L‖γ = rank(L). Theoretically,
the smaller the γ value is, the tighter the γ -norm approximates
the original rank function. To empirically testify how the γ
value affects the denoising performance, we vary γ value and
show the performance in Fig. 21. It is observed that when γ is
set in the interval [7 ∗ 10−3, 1.2 ∗ 10−2], NonLRMA performs
the best.

4) Patch Size q: Given the optimal values of λ, ρ0, and γ ,
we investigate the influence of the patch size q . The MPSNR,
MSSIM, and MFSIM values of the results obtained by our

Fig. 14. Horizontal mean profiles of band 207 in HYDICE urban data
set. (a) Original. (b) VBM3D. (c) LRMR. (d) NAILRMA. (e) WSN-LRMA.
(f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

proposed NonLRMA method with different patch sizes are
reported in Table II. Based on Table II, we set q to 20 in our
simulated data experiments. On real data sets, we set q to 50
in these experiments for faster convergence with a step size
being 16.

Overall, the parameter settings of our proposed NonLRMA
method used for simulated and real data experiments are
presented in Table III.

5) Running Time: The running time of different approaches
on two real-world HSIs is reported in Table IV. VBM3D1

is the fastest approach among all the methods in all cases.
However, its denoising performance is limited. Although the
visual qualities of WSN-LRMA are similar to ours, Table IV
demonstrates that NonLRMA is at least six times faster than
WSN-LRMA. This is mainly due to the fact that fewer
iterations are required by our algorithm to converge to the
final solution. In addition, though our method consumes more
time than NAILRMA, we provide better results.

D. Discussions

Most above-mentioned methods we compare with are
recently developed methods in the low-rank modeling frame-
work and represent state of the art due to their effectiveness
and efficiency [28], [29]. Comparisons with such methods

1VBM3D is implemented with complied C++ mex-function and uses
parallelization for acceleration, while other approaches are implemented using
MATLAB.
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Fig. 15. Restoration results on Hyperion Australia data set: slight noise band. (a) Original image located at the 61st band. Resorted image obtained by
(b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA.

Fig. 16. Restoration results on Hyperion Australia data set: moderate noise band. (a) Original image located at the 123th band. The resorted image obtained
by (b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA.

Fig. 17. Restoration results on Hyperion Australia data set: severe noise band. (a) Original image located at the 51st band. Resorted image obtained by
(b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA.

provide convincing evidence that supports the effectiveness
of NonLRMA. As fully exploited in Section IV, NonLRMA
can not only remove the mixture of Gaussian noise, impulse

noise, deadlines, and stripes, but also recover most details of
the dropped bands that are severely corrupted by mixed noises,
with both qualitative and quantitative improvements as shown
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Fig. 18. Vertical mean profiles of band 51 in Hyperion Australia data
set. (a) Original. (b) VBM3D. (c) LRMR. (d) NAILRMA. (e) WSN-LRMA.
(f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

TABLE II

QUANTITATIVE EVALUATION OF NONLRMA
WITH DIFFERENT PATCH SIZES

TABLE III

PARAMETERS SETTING IN OUR ALGORITHM

in Table I and Fig. 4. Similar observations can be found on
real data experiments conducted in Section IV-B. It has been
empirically verified that NonLRMA can achieve promising
performance with a wide range of parameter settings. More-
over, Table IV shows that NonLRMA is much faster than
WSN-LRMA. Considering the superior performance as well as
its insensitivity to parameters, NonLRMA has great potential
in real world applications.

Fig. 19. Horizontal mean profiles of band 51 in Hyperion Australia data
set. (a) Original. (b) VBM3D. (c) LRMR. (d) NAILRMA. (e) WSN-LRMA.
(f) NonLRMA. The figure is better viewed in a zoomed-in PDF.

Fig. 20. Sensitivity analysis of parameter λ (λ from 10 to 50). (a) Change
in the MPSNR value. (b) Change in the MSSIM value. (c) Change in the
MFSIM value. The figure is better viewed in a zoomed-in PDF.

Fig. 21. Sensitivity analysis of parameter γ (γ from 3 × 10−3 to 2 × 10−2).
(a) Change in the MPSNR value. (b) Change in the MSSIM value. (c) Change
in the MFSIM value. The figure is better viewed in a zoomed-in PDF.

V. CONCLUSION

We have presented the NonLRMA model by applying the
particular nonconvex surrogate of l0 norm on the singular
values to approximate the rank function instead of the nuclear
norm for the reconstruction of corrupted HSIs. This model
targets at recovering a low rank matrix representing the clean
HSI, as well as simultaneously removing the Gaussian noise,
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TABLE IV

COMPARISON OF RUNNING TIME (IN HOURS) FOR THE HSI DENOISING
APPROACHES ON TWO DIFFERENT REAL-WORLD HSIs

impulse noise, deadlines, and stripes. In addition, we develop
an easy-to-implement iterative algorithm based on the ALM
method. The extensive experiments on different simulated and
real HSIs demonstrate that our approach is robust to both
Gaussian and impulse noises, as well as deadlines and stripes.

Undeniable, the proposed algorithm still has room for
improvement in running time. How to design fast and accurate
HSI denoising approaches is our future work. Additionally,
an HSI is essentially a third-order tensor, and we plan to
consider sparsity on a tensor level in the future.
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